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This report emphasizes the final year of the grant period. Earlier work, dating back to 1981

is summarized in the publications that are cited below.

Detectability Analysis. An overall theme of our research has been to evaluate and

interpret spectroscopic evidence for compositional variability on Mars. We have assessed the

compositional variability that could be detected spectroscopically under computer-simulated "best

case" conditions using all available wavelength measurements. We used laboratory spectra of

Martian analog materials including basalt, weathered basaltic palagonite and other mineral and rock

types. Laboratory spectra were convolved with Viking Lander and Viking Orbiter spectral channels

and the resulting pseudospectra were analyzed for detectability. In the detectability analysis the

spectrum of one material is evaluated relative to a specified background which may consist of one

or more spectrally distinct materials. The detectability of the "target" material depends on the

spectral contrast with the background and on system parameters, including the number and

wavelength of the camera channels and the signal-to-noise ratio of the measurements.

Simulations also were made of telescopic spectra by normalizing laboratory spectra at

0.56um. Detectability thresholds were then determined for various target materials and

backgrounds. Thresholds were measured at different signal-to-noise levels for laboratory

measurements and for the simulated Viking Lander, Viking Orbiter, and telescopic data. Our

results indicate that there is a wide range of detectability thresholds for Martian analog materials

and that, in general, detectability of most materials is poor for systems with few channels such as

Viking Orbiter, and that it also is poor for normalized data such as the telescopic measurements.

An example is the detectability threshold of andesitic ash (Mt. St. Helens) in a background

of basalt and weathered basaltic palagonite. We posed the question: how much andesitic ash

would have to be present to be spectrally detectable in the presence ot basalt and palagonite?

Alternatively, if the present spectroscopic and other evidence is correct that the surface of Mars is

dominated by basalts and weathered palagonitic dust, what other materials (such as andesite)

might be present that might be spectrally indistinguishable from the two main materials and their

mixtures? We showed that andesitic ash is detectable using laboratory spectra at amounts of a few

percent. However, when measured by Viking Orbiter the ash must be a m_inr r_nrnnc,n,,n* ,',f ,h,,
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surface to be detected. Similarly, to be detected in the telescopic spectra with a signal-to-noise

ratio of 50:1 the andesitic ash would have to comprise 15 to 20% of the surface.

The poor detectability of andesitic ash in the telescopic simulation occurs in spite of high

spectral resolution. The problem lies in the normalization of the data which eliminates the "albedo"

information. Most researchers analyzing telescopic spectra today work with normalized data

because they are interested primarily in identifying specific absorption bands that can be assigned

to minerals. Unfortunately, most absorption bands in the Martian spectra are weak (excepting the

Fe3+ ones) and it is difficult to isolate weak mineral bands from atmospheric ones and from the

instrumental noise. Current debates about scapolite illustrate the point.

Telescopic measurements are not being used to full advantage. Our modeling results

indicate that if the albedo information could be recovered from the telescopic data the

detectability of all materials would be increased substantially. For example, one then could

examine whether a large fraction of scapolite would be detectable using the measurements over

the rest of the spectrum, outside of the absorption bands. We are aware of the reasons for making

normalized telescopic measurements, and of the difficulties in acquiring absolute data. However,

the effort may be worthwhile.

Telescopic CCD Imaaes. Beginning in 1988 and continuing through 1990 a large

number of high spectral resolution CCD images were acquired at Mauna Kea and Pic du Midi.

Some of these data have been published and some are being reduced. Although of very high

spectral resolution, these measurements have been difficult to calibrate and, therefore, have

been difficult to compare and to interpret in terms of laboratory reference spectra. This

fundamental problem of calibrating spectral measurements that are obtained by various

instruments under different illumination and atmospheric conditions has been one focus of our

research for several years.

Part of our research effort in the past year has been to calibrate and interpret high spectral

resolution telescopic spectra and CCD images in collaboration with T. McCord, J. Bell, and P.

Pinet. In working with the telescopic CCD data we have addressed one particularly difficult

problem, namely, that spectra are affected by the rotation of Mars during and between

measurements. When spectral measurements are sequenced in time the field of view shifts as a

function of wavelength. Smearing during measurement at a single wavelength increases the

instantaneous field of view; however, movement during multiple (wavelength) measurements

poses a difficulty in registering the multispectral data into an image cube. Registration can be

approximated by shifting pixel arrays by a time-distance function, but accurate registration requires

tie- points on the surface. Unfortunately, surface features vary in contrast with wavelength, and

cannot be counted on for registration.
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Terrestrial analoos. We have been working with J. Bell (U. of Hawaii and our

laboratory) and R. Morris (JSC) to further evaluate the spectra of the bright areas of Mars in the

visible and near-infrared. We have found a new sample of Hawaiian palagonitic tephra that has the

best fit that we have seen so far to the telescopic spectra of martian dust. The sample occurs at

the contact between a basalt dike and a basalt tephra cone. We have proposed that the

palagonitic sample formed under conditions that also could have occurred on the surface of Mars

as a result of volcanic or impact thermal pulses applied to basaltic tephra containing adsorbed

water or ice. We have examined the magnetic and Mossbauer properties of the iron phases in the

sample, and have evaluated the reflectance spectra in terms of the iron oxide / oxyhydroxide

mineralogy.
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